Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 669
Filtrar
5.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675529

RESUMO

It is well known that daidzein has various significant medicinal values and health benefits, such as anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, cholesterol lowering, neuroprotective, cardioprotective and so on. To our disappointment, poor solubility, low permeability and inferior bioavailability seriously limit its clinical application and market development. To optimize the solubility, permeability and bioavailability of daidzein, the cocrystal of daidzein and piperazine was prepared through a scientific and reasonable design, which was thoroughly characterized by single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Combining single-crystal X-ray diffraction analysis with theoretical calculation, detailed structural information on the cocrystal was clarified and validated. In addition, a series of evaluations on the pharmacogenetic properties of the cocrystal were investigated. The results indicated that the cocrystal of daidzein and piperazine possessed the favorable stability, increased solubility, improved permeability and optimized bioavailability of daidzein. Compared with the parent drug, the formation of cocrystal, respectively, resulted in 3.9-, 3.1-, 4.9- and 60.8-fold enhancement in the solubility in four different media, 4.8-fold elevation in the permeability and 3.2-fold in the bioavailability of daidzein. Targeting the pharmaceutical defects of daidzein, the surprising elevation in the solubility, permeability and bioavailability of daidzein was realized by a clever cocrystal strategy, which not only devoted assistance to the market development and clinical application of daidzein but also paved a new path to address the drug-forming defects of insoluble drugs.


Assuntos
Disponibilidade Biológica , Isoflavonas , Permeabilidade , Piperazina , Solubilidade , Isoflavonas/química , Isoflavonas/farmacocinética , Piperazina/química , Cristalização , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Animais , Cristalografia por Raios X , Varredura Diferencial de Calorimetria , Humanos
6.
Gene ; 918: 148482, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649061

RESUMO

OBJECTIVES: Sepsis is a life-threatening infectious disease in which an immune inflammatory response is triggered. The potential effect of ferroptosis-related genes (FRGs) in inflammation of sepsis remained unclear. We focused on identifying and validating core FRGs and their association with immune infiltration in blood from currently all patients with sepsis. METHODS: All current raw data of septic blood were obtained from Gene Expression Omnibus. After removing the batch effect merging into a complete dataset and obtaining Diferentially expressed genes (DEGs). Common cross-talk genes were identified from DEGs and FRGs. WGCNA, GO, KEGG, PPI, GESA, ROC curves, and LASSO regression analysis were performed to indentify and validate key genes based on external septic datasets. Infiltrated immune cells in 2 hub genes (MAPK14 and ACSL4) were conducted using CIBERSORT algorithm and Spearman correlation analysis. Further, the expressions of 2 core FRGs were verified in the LPS-induced ALI and cardiac injury sepsis mice. RESULTS: MAPK14 and ACSL4 were identified, mostly enriched in T cell infiltration through NOD-like receptor signaling pathway according to the high or low 2 hub genes expression. The upregulated 2 ferroptosis-related genes were validated in LPS-induced ALI and cardiac injury mice, accompanied by upregulation of the NLRP3 pathway. CONCLUSION: MAPK14 and ACSL4 could become robustly reliable and promising biomarkers for sepsis by regulating ferroptosis through the NLRP3 pathway, which is mainly associated with T-cell infiltration.

8.
Front Pharmacol ; 15: 1355169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533257

RESUMO

Introduction: Ischemic stroke (IS) is a detrimental neurological disease with limited treatment options. Recanalization of blocked blood vessels and restoring blood supply to ischemic brain tissue are crucial for post-stroke rehabilitation. The decoction Naodesheng (NDS) composed of five Chinese botanical drugs, including Panax notoginseng (Burk.) F. H. Chen, Ligusticum chuanxiong Hort., Carthamus tinctorius L., Pueraria lobata (Willd.) Ohwi, and Crataegus pinnatifida Bge., is a blood-activating and stasis-removing herbal medicine commonly used for the clinical treatment of cerebrovascular diseases in China. However, the material basis of NDS on the effects of blood circulation improvement and vascular tone regulation remains unclear. Methods: A database comprising 777 chemical metabolites of NDS was constructed. Then, the interactions between various herbal metabolites of NDS and five vascular tone modulation G-protein-coupled receptors (GPCRs), including 5-HT1AR, 5-HT1BR, ß2-AR, AT1R, and ETBR, were assessed by molecular docking. Using network analysis and vasomotor experiment of the cerebral basilar artery, the potential material basis underlying the vascular regulatory effects of NDS was further explored. Results: The Naodesheng Effective Component Group (NECG) was found to induce relaxation of rat basilar artery rings precontracted using Endothelin-1 (ET-1) and KCl in vitro in a dose-dependent manner. Several metabolites of NDS, including C. tinctorius, C. pinnatifida, and P. notoginseng, were found to be the main plant resources of metabolites with high docking scores. Furthermore, several metabolites in NDS, including formononetin-7-glucoside, hydroxybenzoyl-coumaric anhydride, methoxymecambridine, puerarol, and pyrethrin II, were found to target multiple vascular GPCRs. Metabolites with moderate-to-high binding energy were verified to have good rat basilar artery-relaxing effects, and the maximum artery relaxation effects of all three metabolites, namely, isorhamnetin, kaempferol, and daidzein, were found to exceed 90%. Moreover, metabolites of NDS were found to exert a synergistic effect by interacting with vascular GPCR targets, and these metabolites may contribute to the cerebrovascular regulatory function of NDS. Discussion: The study reports that various metabolites of NDS contribute to its vascular tone regulating effects and demonstrates the multi-component and multi-target characteristics of NDS. Among them, metabolites with moderate-to-high binding scores in NDS may play an important role in regulating vascular function.

9.
Pharmaceutics ; 16(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543277

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are class II biopharmaceutics classification system drugs. The poor aqueous solubility of NSAIDs can lead to limited bioavailability after oral administration. Metformin (MET), a small-molecule compound, can be used in crystal engineering to modulate the physicochemical properties of drugs and to improve the bioavailability of orally administered drugs, according to the literature research and preliminary studies. We synthesized two drug-drug molecular salts (ketoprofen-metformin and phenylbutazone-metformin) with NSAIDs and thoroughly characterized them using SCXRD, PXRD, DSC, and IR analysis to improve the poor solubility of NSAIDs. In vitro evaluation studies revealed that the thermal stability and solubility of NSAIDs-MET were substantially enhanced compared with those of NSAIDs alone. Unexpectedly, an additional increase in permeability was observed. Since the structure determines the properties, the structure was analyzed using theoretical calculations to reveal the intermolecular interactions and to explain the reason for the change in properties. The salt formation of NSAIDs with MET could substantially increase the bio-absorption rate of NSAIDs, according to the in vivo pharmacokinetic findings, which provides an experimental basis for developing new antipyretic and analgesic drugs with rapid onset of action.

10.
Nat Prod Bioprospect ; 14(1): 20, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436812

RESUMO

Scutellarin is widely distributed in Scutellaria baicalensis, family Labiatae, and Calendula officinalis, family Asteraceae, and belongs to flavonoids. Scutellarin has a wide range of pharmacological activities, it is widely used in the treatment of cerebral infarction, angina pectoris, cerebral thrombosis, coronary heart disease, and other diseases. It is a natural product with great research and development prospects. In recent years, with in-depth research, researchers have found that wild scutellarin also has good therapeutic effects in anti-tumor, anti-inflammatory, anti-oxidation, anti-virus, treatment of metabolic diseases, and protection of kidney. The cancer treatment involves glioma, breast cancer, lung cancer, renal cancer, colon cancer, and so on. In this paper, the sources, pharmacological effects, in vivo and in vitro models of scutellarin were summarized in recent years, and the current research status and future direction of scutellarin were analyzed.

11.
Eur J Med Chem ; 268: 116277, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422700

RESUMO

A series of novel urea derivatives were designed, synthesized and evaluated for their inhibitory activities against HT-29 cells, and structure-activity relationships (SAR) were summarized. Compound 10p stood out from these derivatives, exhibiting the most potent antiproliferative activity. Further biological studies demonstrated that 10p arrested cell cycle at G2/M phase via regulating cell cycle-related proteins CDK1 and Cyclin B1. The underlying molecular mechanisms demonstrated that 10p induced cell death through ferroptosis and autophagy, but not apoptosis. Moreover, 10p-induced ferroptosis and autophagy were both related with accumulation of ROS, but they were independent of each other. Our findings substantiated that 10p combines ferroptosis induction and autophagy trigger in single molecule, making it a potential candidate for colon cancer treatment and is worth further development.


Assuntos
Neoplasias do Colo , Ferroptose , Humanos , Divisão Celular , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Autofagia , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
12.
Chem Biodivers ; 21(4): e202301979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302832

RESUMO

Acetyl-11-keto-ß-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-ß-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.


Assuntos
Autoanticorpos , Benzenoacetamidas , Glioblastoma , Piperidonas , Triterpenos , Humanos , Glioblastoma/tratamento farmacológico , Triterpenos/química , Linhagem Celular Tumoral , Amidas
13.
J Asian Nat Prod Res ; 26(1): 154-176, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38321773

RESUMO

Glioblastoma (GBM) is the most common, malignant, and lethal primary brain tumor in adults. Up to now, the chemotherapy approaches for GBM are limited. Therefore, more studies on identifying and exploring new chemotherapy drugs or strategies overcome the GBM are essential. Natural products are an important source of drugs against various human diseases including cancers. With the better understanding of the molecular etiology of GBM, the development of new anti-GBM drugs has been increasing. Here, we summarized recent researches of natural products for the GBM therapy and their potential mechanisms in details, which will provide new ideas for the research on natural products and promote developing drugs from nature products for GBM therapy.


Assuntos
Produtos Biológicos , Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
14.
Cancer Cell Int ; 24(1): 69, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341584

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most common brain tumor with the worst prognosis. Temozolomide is the only first-line drug for GBM. Unfortunately, the resistance issue is a classic problem. Therefore, it is essential to develop new drugs to treat GBM. As an oncogene, Skp2 is involved in the pathogenesis of various cancers including GBM. In this study, we investigated the anticancer effect of AAA237 on human glioblastoma cells and its underlying mechanism. METHODS: CCK-8 assay was conducted to evaluate IC50 values of AAA237 at 48, and 72 h, respectively. The Cellular Thermal Shift Assay (CETSA) was employed to ascertain the status of Skp2 as an intrinsic target of AAA237 inside the cellular milieu. The EdU-DNA synthesis test, Soft-Agar assay and Matrigel assay were performed to check the suppressive effects of AAA237 on cell growth. To identify the migration and invasion ability of GBM cells, transwell assay was conducted. RT-qPCR and Western Blot were employed to verify the level of BNIP3. The mRFP-GFP-LC3 indicator system was utilized to assess alterations in autophagy flux and investigate the impact of AAA237 on the dynamic fusion process between autophagosomes and lysosomes. To investigate the effect of compound AAA237 on tumor growth in vivo, LN229 cells were injected into the brains of mice in an orthotopic model. RESULTS: AAA237 could inhibit the growth of GBM cells in vitro. AAA237 could bind to Skp2 and inhibit Skp2 expression and the degradation of p21 and p27. In a dose-dependent manner, AAA237 demonstrated the ability to inhibit colony formation, migration, and invasion of GBM cells. AAA237 treatment could upregulate BNIP3 as the hub gene and therefore induce BNIP3-dependent autophagy through the mTOR pathway whereas 3-MA can somewhat reverse this process. In vivo, the administration of AAA237 effectively suppressed the development of glioma tumors with no side effects. CONCLUSION: Compound AAA237, a novel Skp2 inhibitor, inhibited colony formation, migration and invasion of GBM cells in a dose-dependent manner and time-dependent manner through upregulating BNIP3 as the hub gene and induced BNIP3-dependent autophagy through the mTOR pathway therefore it might be a viable therapeutic drug for the management of GBM.

15.
Small ; : e2310565, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396273

RESUMO

Immunotherapy utilizing anti-PD-L1 blockade has achieved dramatic success in clinical breast cancer management but is often hampered by the limited immune response. Increasing evidence shows that immunogenic cell death (ICD) recently arises as a promising strategy for enlarging tumor immunogenicity and eliciting systemic anti-tumor immunity effectively. However, developing simple but versatile, highly efficient but low-toxic, biosafe, and clinically available transformed ICD inducers remains a huge demand and is highly desirable. Herein, a multifunctional ICD inducer is purposefully developed A6-MPDA@PAL by integrating photothermal therapy (PTT) nanoplatforms mesoporous polydopamine (MPDA), CDK4/6 inhibitor palbociclib (PAL), and CD44-specific targeting A6 peptide in a simple way for augmenting the immune antitumor efficacy of anti-PD-L1 therapy. Remarkably, the light-inducible nanoplatforms exhibit multiple favorable therapeutic features ensuring a superior and biosafe PTT/chemotherapy efficacy. Together with stronger accumulative ICD induction, single administration of A6-MPDA@PAL can trigger robust systemic antitumor immunity and abscopal effect with the assistance of anti-PD-L1 blockade by fascinating the intratumoral infiltration of T lymphocytes and reversing the immunosuppressive tumor microenvironment simultaneously, therapy achieving brilliant synergistic immunotherapy with effective tumor ablation. This study presents a simple and smart ICD inducer opening up attractive clinical possibilities for reinforcing the anti-PD-L1 therapy against breast cancer.

16.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38256926

RESUMO

Matrine (MAT), a natural Chinese herbal medicine, has a unique advantage in the treatment of various chronic diseases. However, its low melting point, low bioavailability, and high dosage restrict its subsequent development into new drugs. In this study, three kinds of MAT salts, namely, MAT-2,5-dihydroxybenzoic acid (MAT-25DHB), MAT-2,6-dihydroxybenzoic acid (MAT-26DHB), and MAT-salicylic acid-hydrate (MAT-SAL-H2O), were designed and synthesized to improve the drugability of MAT. The three salts were characterized by using various analytical techniques, including single-crystal X-ray diffractometry, powder X-ray diffractometry, differential scanning calorimetry, thermogravimetry, and infrared spectroscopy. The results of the thermal stability evaluation showed that the formation of salts improved the stability of MAT; MAT-25DHB is the most stable salt reported at present. The results of aqueous solubility showed that the solubility of MAT-25DHB was higher than that of MAT, while that of MAT-26DHB and MAT-SAL-H2O were less. Given that the MAT-25DHB salt further improved the solubility of MAT, it is expected to be subjected to further research as an optimized salt. Lattice energy and solvation free energy are important factors affecting the solubility of salts; the reasons for the changes of solubility and stability of three kinds of salts are explained by calculating them.

17.
Acta Pharmacol Sin ; 45(1): 209-222, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37749236

RESUMO

Glioblastoma (GBM) is the most common malignant tumor in the brain with temozolomide (TMZ) as the only approved chemotherapy agent. GBM is characterized by susceptibility to radiation and chemotherapy resistance and recurrence as well as low immunological response. There is an urgent need for new therapy to improve the outcome of GBM patients. We previously reported that 3-O-acetyl-11-keto-ß-boswellic acid (AKBA) inhibited the growth of GBM. In this study we characterized the anti-GBM effect of S670, a synthesized amide derivative of AKBA, and investigated the underlying mechanisms. We showed that S670 dose-dependently inhibited the proliferation of human GBM cell lines U87 and U251 with IC50 values of around 6 µM. Furthermore, we found that S670 (6 µM) markedly stimulated mitochondrial ROS generation and induced ferroptosis in the GBM cells. Moreover, S670 treatment induced ROS-mediated Nrf2 activation and TFEB nuclear translocation, promoting protective autophagosome and lysosome biogenesis in the GBM cells. On the other hand, S670 treatment significantly inhibited the expression of SXT17, thus impairing autophagosome-lysosome fusion and blocking autophagy flux, which exacerbated ROS accumulation and enhanced ferroptosis in the GBM cells. Administration of S670 (50 mg·kg-1·d-1, i.g.) for 12 days in a U87 mouse xenograft model significantly inhibited tumor growth with reduced Ki67 expression and increased LC3 and LAMP2 expression in the tumor tissues. Taken together, S670 induces ferroptosis by generating ROS and inhibiting STX17-mediated fusion of autophagosome and lysosome in GBM cells. S670 could serve as a drug candidate for the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Ferroptose , Glioblastoma , Humanos , Animais , Camundongos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Autofagossomos/metabolismo , Amidas/farmacologia , Transdução de Sinais , Lisossomos/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Qa-SNARE
18.
Acta Pharmacol Sin ; 45(3): 480-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993535

RESUMO

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.


Assuntos
Flavanonas , Neuroblastoma , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Ratos , Animais , Canais KATP , Rotenona/farmacologia , Receptores de Sulfonilureias , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glibureto/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Neurônios Dopaminérgicos/metabolismo , Trifosfato de Adenosina/farmacologia
19.
Carcinogenesis ; 45(4): 262-273, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997385

RESUMO

OBJECTIVES: There are three major subtypes of breast cancer, ER+, HER2+ and triple-negative breast cancer (TNBC), namely ER-, PR-, HER2-. TNBC is the most aggressive breast cancer with poor prognosis and no target drug up to now. Actinomycin D (ActD) is a bioactive metabolite of marine bacteria that has been reported to have antitumor activity. The aim of study is to investigate whether ActD has a synergetic effect on TNBC with Doxorubicin (Dox), the major chemotherapeutic drug for TNBC, and explore the underlying mechanism. METHODS: TNBC cell lines HCC1937, MDA-MB-436 and nude mice were used in the study. Drug synergy determination, LDH assay, MMP assay, Hoechst 33342 staining, Flow cytometry, Flexible docking and CESTA assay were carried out. The expression of proteins associated with apoptosis was checked by Western blot and siRNA experiments were performed to investigate the role of P53 and PUMA induced by drugs. RESULTS: There was much higher apoptosis rate of cells in the ActD + Dox group than that in ActD group or Dox group. Expression of MDM2 and BCL-2 was reduced while expression of P53, PUMA and BAX were increased in the groups treated with ActD + Dox or Dox compared to the control group. Furthermore, P53 siRNA or PUMA siRNA tremendously abrogated the cell apoptosis in the groups treated by ActD, Dox and ActD + Dox. Flexible docking and CESTA showed that ActD can bind MDM2. CONCLUSIONS: ActD had a synergetic effect on TNBC with Dox via P53-dependent apoptosis and it may be a new choice for treatment of TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Humanos , Animais , Neoplasias de Mama Triplo Negativas/genética , Dactinomicina/farmacologia , Dactinomicina/metabolismo , Dactinomicina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Camundongos Nus , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Apoptose , RNA Interferente Pequeno
20.
Gene ; 897: 148079, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38101711

RESUMO

The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA